首页> 外文OA文献 >Material-device-circuit co-optimization of 2D material based FETs for ultra-scaled technology nodes
【2h】

Material-device-circuit co-optimization of 2D material based FETs for ultra-scaled technology nodes

机译:用于超大规模技术节点的基于2D材料的FET的材料-设备-电路共同优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two-dimensional (2D) material based FETs are being considered for future technology nodes and high performance logic applications. However, a comprehensive assessment of 2D material based FETs has been lacking for high performance logic applications considering appropriate system level figure-of-merits (FOMs) e.g. delay, and energy-delay product. In this paper, we present guidelines for 2D material based FETs to meet sub-10 nm high performance logic requirements focusing on material requirement, device design, energy-delay optimization for the first time. We show the need for 2D materials with smaller effective mass in the transport direction and anisotropicity to meet the performance requirement for future technology nodes. We present novel device designs with one such 2D material (monolayer black-phosphorus) to keep Moore’s alive for the HP logic in sub-5 nm gate length regime. With these device proposals we show that below 5 nm gate lengths 2D electrostatistics arising from gate stack design becomes more of a challenge than direct source-to-drain tunneling for 2D material-based FETs. Therefore, it is challenging to meet both delay and energy-delay requirement in sub-5 nm gate length regime without scaling both supply voltage (VDD) and effective-oxide-thickness (EOT) below 0.5 V and 0.5 nm respectively.
机译:基于二维(2D)材料的FET正在考虑用于未来的技术节点和高性能逻辑应用。但是,考虑到适当的系统级品质因数(FOM),例如高性能的逻辑应用,对于基于2D材料的FET缺乏全面的评估。延迟和节能产品。在本文中,我们首次提出了基于2D材料的FET以满足10nm以下高性能逻辑要求的指南,重点是材料要求,器件设计,能量延迟优化。我们表明需要在运输方向和各向异性上具有较小有效质量的2D材料,以满足未来技术节点的性能要求。我们提出了一种新型的器件设计,其中包含一种这样的2D材料(单层黑磷),以使摩尔在5纳米以下的栅极长度范围内保持HP逻辑的生命。通过这些器件建议,我们表明,与基于2D材料的FET的直接源极至漏极隧穿相比,栅极堆叠设计产生的2D静电统计要比5nm栅极长度更具挑战性。因此,要在不到5 nm的栅极长度范围内满足延迟和能量延迟的要求,同时又不将电源电压(VDD)和有效氧化物厚度(EOT)分别控制在0.5 V和0.5 nm以下,这是一个挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号